
Theoretical Computer Science 371 (2007) 54–61
www.elsevier.com/locate/tcs

A uniform solution to SAT using membrane creation

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez∗, Francisco J. Romero-Campero

Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, University of Sevilla,
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

Abstract

In living cells, new membranes are produced basically through two processes: mitosis and autopoiesis. These two processes
have inspired two variants of cell-like membrane systems, namely P systems with active membranes and P systems with membrane
creation. In this paper, we provide the first uniform, efficient solution to the SAT problem in the framework of recogniser P
systems with membrane creation using dissolution rules. Recently the authors have proved that if the dissolution rules are not
allowed to be used, then the polynomial complexity class associated with this variant of P systems is the standard complexity
class P. This result, together with the main result of this paper, shows the surprising role of the apparently “innocent” operation of
membrane dissolution. The use of this type of rule establishes the difference between efficiency and non-efficiency for P systems
with membrane creation, and provides a barrier between P and NP (assuming P 6= NP).
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Natural computing; Membrane computing; Cellular complexity classes; SAT problem

1. Introduction

Membrane computing is an emergent branch of natural computing introduced by Păun in [12]. Since then, it has
received important attention from the scientific community. In fact, membrane computing has been selected by the
Institute for Scientific Information, USA, as a Fast Emerging Research Front in Computer Science, and [11] was
mentioned in [14] as a highly cited paper in October 2003.

This non-deterministic model of computation starts from the assumption that the processes taking place in the
compartmental structures of living cells can be interpreted as computations. The devices of this model are called P
systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in the compartments of which one
places multisets of objects that evolve according to given rules in a synchronous non-deterministic maximally parallel
manner.1 The representation of data as multisets is an abstraction from the way in which chemical compounds are
found in living cells. Membrane computing is a cross-disciplinary field, with contributions by computer scientists,

∗ Corresponding author. Tel.: +34 954557952; fax: +34 954557952.
E-mail address: marper@us.es (M.J. Pérez-Jiménez).

1 An introduction can be found in [6], and updated information at [15].

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.10.013

http://www.elsevier.com/locate/tcs
mailto:marper@us.es
http://dx.doi.org/10.1016/j.tcs.2006.10.013

M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61 55

biologists, formal linguists and complexity theoreticians, enriching each others’ results and problems, and promising
new research lines.

In this paper, we present a contribution from the computational side. We introduce a family of P systems with
membrane creation, constructed in a uniform way, that solves the problem of determining, for a given formula in
conjunctive normal form, whether it is satisfiable or not (the SAT problem).

The paper is organised as follows: first P systems with membrane creation are introduced in the next section. In
Section 3, recogniser P systems (devices that capture the intuitive idea underlying the concept of an algorithm) are
presented. The solution in the framework of membrane creation to the SAT problem is given in Section 4. Finally,
some formal details and conclusions are given.

2. P systems with membrane creation

Polynomial solutions to NP-complete problems in membrane computing are produced by trading time for space.
This is inspired by the capability of cells to produce an exponential number of new membranes (new workspaces)
in polynomial time. Basically, there are two ways of producing new membranes in living cells: mitosis (membrane
division) and autopoiesis (membrane creation, see [5]). Both ways of generating new membranes have given rise to
different variants of P systems: P systems with active membranes, where the new workspace is generated by membrane
division, and P systems with membrane creation, where the new membranes are created from objects. Both models
have been proved to be universal, but up to now there is no theoretical result proving that these models simulate
each other in polynomial time. P systems with active membranes have been successfully used to design solutions to
NP-complete problems, as SAT [10], Subset Sum [7], Knapsack [8], Bin Packing [9] and Partition [2], but as Păun
pointed in [13] “membrane division was much more carefully investigated than membrane creation as a way to obtain
tractable solutions to hard problems”.

In this paper, we investigate the second variant mentioned above. Membranes are created in living cells, for
instance, in the process of vesicle mediated transport, and in order to keep molecules close to each other to facilitate
their reactions. Membranes can also be created in a laboratory—see [5]. Here, we abstract the operation of the creation
of new membranes under the influence of existing chemical substances to define P systems with membrane creation.

Recall that a P system with membrane creation is a construct of the form Π = (O, H, µ,w1, . . . , wm, R), where
m ≥ 1 is the initial degree of the system; O is the alphabet of objects, and H is a finite set of labels for membranes;
µ is a membrane structure, consisting of m membranes injectively labelled with elements of H, and w1, . . . , wm are
strings over O , describing the multisets of objects placed in the m regions of µ; R is a finite set of rules, of the forms:

(a) [a → v]h where h ∈ H , a ∈ O and v is a string over O describing a multiset of objects (object evolution rules)
associated with membranes and depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ H , a, b ∈ O (send-in communication rules). An object is introduced in the membrane,
possibly modified.

(c) [a]h → []h b where h ∈ H , a, b ∈ O (send-out communication rules). An object is sent out of the membrane,
possibly modified.

(d) [a]h → b where h ∈ H , a, b ∈ O (dissolution rules). A membrane is dissolved in reaction with an object, which
can be modified.

(e) [a → [v]h2]h1 where h1, h2 ∈ H , a ∈ O and v is a string over O describing a multiset of objects (creation rules).
In reaction with an object, a new membrane is created. This new membrane is placed inside of the membrane of
the object, which triggers the rule and has associated an initial multiset and a label.

Rules are applied according to the following principles:

• Rules from (a) to (d) are used as is usual in the framework of membrane computing, i.e., in a maximal parallel
way. In one step, each object in a membrane can only be used for one rule (non- deterministically chosen), but any
object which can evolve by a rule must do it (with the restrictions indicated below).

• Rules of type (e) are used also in a maximal parallel way. Each object a in a membrane labelled with h1 produces
a new membrane with label h2, placing in it the multiset of objects described by the string v.

• If a membrane is dissolved, its content (multiset and interior membranes) becomes part of the immediately external
one. The skin is never dissolved.

56 M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61

• All the elements which are not involved in any of the operations to be applied remain unchanged.
• Rules associated with the label h are used for all membranes with this label, irrespective of whether the membrane

is an initial one or whether it was created.
• Several rules can be applied to different objects in the same membrane simultaneously. The exceptions are the rules

of type (d), since a membrane can be dissolved only once.

3. Recogniser P systems with membrane creation

Recogniser P systems were introduced in [8], and are the natural framework to study and solve decision problems,
since deciding whether an instance has an affirmative or negative answer is equivalent to deciding if a string belongs
to the language associated with the problem or not.

In the literature, recogniser P systems are associated in a natural way with P systems with input. The data related to
an instance of the decision problem has to be provided to the P system in order for it to compute the appropriate answer.
This is done by codifying each instance as a multiset placed in an input membrane. The output of the computation,
(yes or no), is sent to the environment. In this way, P systems with input and external output are devices which can
be seen as black boxes, in which the user provides the data before the computation starts, and the P system sends
to the environment the output in the last step of the computation. Another important feature of P systems is their
non-determinism. The design of a family of recogniser P systems has to consider it, because all possibilities in the
non-deterministic computations have to output the same answer. This can be summarised in the following definitions
(taken from [1]).

Definition 1. A P system with input is a tuple (Π ,Σ , iΠ), where: (a) Π is a P system, with working alphabet Γ ,
with p membranes labelled by 1, . . . , p, and initial multisets w1, . . . , wp associated with them; (b) Σ is an (input)
alphabet strictly contained in Γ ; the initial multisets are over Γ − Σ ; and (c) iΠ is the label of a distinguished (input)
membrane.

Let m be a multiset over Σ . The initial configuration of (Π ,Σ , iΠ) with input m is (µ, w1, . . . , wiΠ ∪ m, . . . wp).

Definition 2. A recogniser P system is a P system with input, (Π ,Σ , iΠ), and with external output such that:

(1) The working alphabet contains two distinguished elements, yes and no.
(2) All its computations halt.
(3) If C is a computation of Π , then either some object yes or some object no (but not both) must have been released

into the environment, and only in the last step of the computation.

We say that C is an accepting computation (respectively, rejecting computation) if the object yes (respectively, no)
appears in the external environment associated with the corresponding halting configuration of C .

In the next section, we present a uniform solution to the SAT problem in linear time in the following sense.

Definition 3. Let F be a class of recogniser P systems. A decision problem X = (IX , θX) is solvable in polynomial
time by a family Π = (Π (n))n∈N, of P systems from F , and we denote this by X ∈ PMCF , if the following holds:

• The family Π is polynomially uniform by Turing machines; that is, there exists a deterministic Turing machine
constructing Π (n) from n ∈ N in polynomial time.

• There exist a pair (cod, s) of polynomial-time computable functions over IX such that:
− For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the system Π (s(u)).
− The family Π is polynomially bounded with regard to (X, cod, s); that is, there exists a polynomial function p,

such that for each u ∈ IX , each computation of Π (s(u)) with input cod(u) performs at most p(|u|) steps.
− The family Π is sound with regard to (X, cod, s); i.e., for each u ∈ IX , if there exists an accepting computation

of Π (s(u)) with input cod(u), then θX (u) = 1.
− The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX , if θX (u) = 1, then every

computation of Π (s(u)) with input cod(u) is an accepting one.

In the above definition we have imposed a requirement for every P system Π (n) to be confluent, in the following
sense: every computation of a system with the same input must always give the same answer.

It can be proved that the class PMCF is closed under polynomial-time reduction and complement, see [10]. In this
paper, we will deal with the classMC of recogniser P systems with membrane creation.

M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61 57

4. Solving SAT in linear time with membrane creation

The SAT problem is the following: Given a Boolean formula in conjunctive normal form (CNF), to determine
whether or not it is satisfiable, that is, whether there exists an assignment to its variables on which it evaluates to true.

In this section, we describe a family of P systems which solves this problem. We will address the resolution via
a brute force algorithm, in the framework of recogniser P systems with membrane creation, which consists in the
following stages:
• Generation and evaluation stage: Using membrane creation, we will generate all possible assignments associated
with the formula and evaluate it for each.
• Checking stage: In each membrane, we check whether or not the formula evaluates to true on the assignment
associated with it.
• Output stage: The systems sends out to the environment the right answer.

Let us consider the pair function 〈, 〉 defined by 〈n, m〉 = ((n + m)(n + m + 1)/2) + n. This function is
polynomial-time computable (it is primitive recursive and bijective from N2 onto N). For any given formula in CNF,
ϕ = C1 ∧ · · · ∧ Cm , with n variables and m clauses, we construct a P system Π (〈n, m〉) solving it. Therefore the
family presented here is

Π = {(Π (〈n, m〉),Σ (〈n, m〉), i(〈n, m〉)) : (n, m) ∈ N2
}.

For each element of the family, the input membrane is i(〈n, m〉) = t , the input alphabet is Σ (〈n, m〉) = {xi, j , x i, j :

1 ≤ i ≤ m, 1 ≤ j ≤ n} and the P system Π (〈n, m〉) = (Γ (〈n, m〉), {a, t, f, 1, . . . , m}, µ,wa, wt , R(〈n, m〉)) is
defined as:
• Working alphabet: Γ (〈n, m〉) = Σ (〈n, m〉) ∪ {xi, j,l , x i, j,l , zi , zi,l , r j , r j,l , d j : l = t, f, 1 ≤ i ≤ n, 1 ≤ j ≤

m} ∪ {yes, no, yesi , no j : 0 ≤ i ≤ 9, 0 ≤ j ≤ 2n + 11} ∪ {q, k0, k1, k2, t0, t1, t2, t3}.
Note that the size of the alphabet is 6nm + 5n + 4m + 32 ∈ Θ(nm), and recall that the size of an instance of the SAT
problem, a formula with n variables and m clauses, is of the order Ω(nm); therefore the size of the working alphabet
is linear on the size of the input.
• Initial membrane structure: µ = [[]a]t
• Initial Multisets: wa = {no0} wt = {z0,t , z0, f }

• The set of evolution rules, R(〈n, m〉), consists of the following (recall that λ denotes the empty string):
1. [z j,t → [z j+1 k0]t]l [z j, f → [z j+1 k0] f]l for l = t, f and j = 0, . . . , n − 2.
The goal of these rules is to create one membrane for each assignment to the variables of the formula. The new
membrane with label t , where the object z j+1 is placed, represents the assignment x j+1 = true; on the other hand the
new membrane with label f , where the object z j+1 is placed represents the assignment x j+1 = false.
2. [xi j → xi, j,t xi, j, f]l [ri → ri,tri, f]l

[x i, j → x i, j,t x i, j, f]l [zk → zk,t zk, f]l

}
for

l = t, f ; k = 0, . . . , n − 1
i = 1, . . . , m; j = 1, . . . n.

These rules duplicate the objects representing the formula so it can be evaluated on the two possible assignments,
x j = true (xi, j,t , x i, j,t) and x j = false (xi, j, f , x i, j, f). The objects ri are also duplicated (ri,t , ri, f) in order to keep
track of the clauses that evaluate to true on the previous assignments to the variables. The objects zk produce the
objects zk,t and zk, f which will create the new membranes representing the two possible assignments for the next
variable.
3. xi,1,t []t → [ri]t , x i,1,t []t → [λ]t

xi,1, f [] f → [λ] f , x i,1, f [] f → [ri] f

}
for i = 1, . . . , m.

According to these rules, the formula is evaluated in the two possible assignments for the variable that is being
analysed. The objects xi,1,t (respectively x i,1, f) get into the membrane labelled with t (respectively f), being
transformed into the objects ri representing that the clause number i evaluates to true on the assignment x j+1 = true
(resp. x j+1 = false). On the other hand, the objects x i,1,t (respectively xi,1,t) get into the membrane labelled with f
(respectively t), producing no objects. This signifies that these objects do not make the clause true in the assignment
x j+1 = true (respectively x j+1 = false).
4. xi, j,t []t → [xi, j−1]t , x i, j,t []t → [x i, j−1]t

xi, j, f [] f → [xi, j−1] f , x i, j, f [] f → [x i, j−1] f

ri,t []t → [ri]t , ri, f [] f → [ri] f

 for
i = 1, . . . , m
j = 2, . . . , n.

58 M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61

In order to analyse the next variable, the second subscripts of the objects xi, j,l and x i, j,l are decreased when they are
sent into the corresponding membrane, labelled with l. Moreover, following the last rule, the objects ri,l get into the
new membranes to keep track of the clauses that evaluate to true on the previous assignments.
5. [ks → ks+1]l [k2]l → λ for l = t, f ; s = 0, 1.

The objects ki for i = 0, 1, 2 are counters that dissolve membranes when they are not useful any longer during the
rest of the computation.
6. [zn−1,t → [zn]t]l , [zn−1, f → [zn] f]l , [zn → d1 . . . dmq]l for l = t, f .
At the end of the generation stage, the objects zn−1,l create two new membranes where the formula will be evaluated
on the two possible assignments for the last variable xn . The object zn is placed in both membranes, and will produce
the objects d1, . . . , dm, yes0, which will take part in the checking stage.
7. [di → [t0]i]l ri,t []i → [ri]i , [ri]i → λ

[ts → ts+1]i , [t2]i → t3

}
for

i = 1, . . . , m
s = 0, 1.

Following these rules, each object di creates a new membrane with label i where the object t0 is placed; this object
will act as a counter. The object ri gets into the membrane labelled with i and dissolves it, preventing the counter, ti ,
from reaching the object t2. The fact that the object t2 appears in a membrane with label i means that there is no object
ri ; that is, the clause number i does not evaluate to true on the assignment associated with the membrane; therefore
neither does the formula evaluate to true nor its associated assignment.
8. [q → [yes0]a]l t3[]a → [t3]a [t3]a → λ

[yesh → yesh+1]a, [yes5]a → yes6 [yes6]l → yes7[]l

}
for

l = t, f
h = 0, . . . , 4.

The object q creates a membrane with label a where the object yes0 is placed. The object yesh evolves to the object
yesh+1; at the same time the objects t3 can get into the membrane labelled with a and dissolve it, preventing the object
yes6 from being sent out from this membrane.
9. [nop → nop+1]a, [no2n+10]a → no2n+11

yes7[]a → [yes8]a, [yes8]a → yes9

[yes9]t → yes[]t [no2n+11]t → no[]t

 for p = 0, . . . , 2n + 9.

From the beginning of the computation, the object nop evolves to the object nop+1 inside the membrane labelled
with a. If any object yes7 is produced during the computation, it means that the formula evaluates to true on some
assignment to its variables, and it gets into this membrane and dissolves it, producing the object yes9 that will send
out to the environment the object yes. On the other hand, if no object yes7 appears in the skin, the object no2n+10
will dissolve the membrane labelled with a, producing the object no2n+11 that will send out to the environment the
object no.

4.1. An overview of the computation

First of all, given a formula in CNF, ϕ = C1 ∧ · · · ∧ Cm such that Var(ϕ) = {x1, . . . , xn}, we define s(ϕ) = 〈n, m〉

and cod(ϕ) = {xi, j : x j ∈ Ci } ∪ {x i, j : ¬xi, j ∈ Ci }. Then (cod, s) is a pair of polynomial-time computable
functions over ISAT such that s(ϕ) is a natural number and cod(ϕ) is an input multiset over Π (s(u)). Next, we describe
informally how the P system with Π (s(ϕ)) and with input cod(ϕ) works.

In the initial configuration, we have, on the one hand, the input multiset cod(ϕ) and the objects z0,t and z0, f placed
in the skin (membrane labelled with t); and on the other hand, we have in the membrane labelled with a the object
no0. This object evolves during the computation following the first rule in the set 9.

In the first step of the computation, the object z0,t creates a new membrane with label t , which represents the
assignment x1 = true and the object z0, f creates a new membrane with label f , which represents the assignment
x1 = false. In these two new membranes, the objects z1 and k0 are placed. At the same time, the input multiset
representing the formula is duplicated following the two first rules in 2. In the next step, according to the rules in
3, the formula is evaluated on the two possible assignments for x1. In the same step, the rules in 4 decrease the
second subscript of the objects representing the formula (xi, j,l , x i, j,l with j ≥ 2) in order to analyse the next variable.
Moreover, at the same time, the object z1 produces the object z1,t and z1, f and the system is ready to analyse the
next variable. And so the generation and evaluation stages go until all the possible assignments to the variables are
generated, and the formula is evaluated on each one of them. Observe that it takes two steps to generate the possible
assignments for a variable and to evaluate the formula on them; therefore the generation and evaluation stages take 2n

M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61 59

steps. Note that the object k0 in the rules in 5 is a counter that dissolves the membrane when the object k2 appears;
that is, it dissolves the membrane once the membrane is not useful any longer in the rest of the computation.

The checking stage starts when the object zn produces the objects d1, . . . , dm and the object q. In the first step of the
checking stage, each object di , for i = 1, . . . , m creates a new membrane labelled with i , where the object t0 is placed,
and the object q creates a new membrane with label a, placing the object yes0 in it. The objects ri , which signify that
the clause number i evaluates to true on the assignment associated with the membrane, are sent into the membranes
by the last rule in 4, so the system keeps track of the clauses that are true. The objects ri,t get into the membrane
with label i , and dissolve it in the following two steps, preventing the counter t2 from dissolving the membrane and
producing the object t3 according to the last rule in 7. If, for some i , there is no object ri , which means that the clause
i does not evaluate to true on the associated assignment, then the object t2 will dissolve the membrane labelled with i ,
thus producing the object t3 that will get into the membrane with label a where the object yesh evolves following the
rules in 8. The object t3 dissolves the membrane, preventing the production of the object yes6. Therefore the checking
stage takes 6 steps.

Finally the output stage takes place according to the rules in 9. On the one hand, if some object yes6 is present in any
membrane (which represents that the formula evaluates to true on the assignment associated with this membrane) it is
sent out to the skin being transformed into the object yes7. In the next step, yes7 gets into the membrane labelled with
a, being transformed into yes8; then it dissolves the membrane, producing the object yes9. This dissolution prevents
the object no2n+11 from being produced. And finally the object yes is sent out to the environment. On the other hand,
if there is no object yes6, then the membrane with label a is not dissolved, and thus the object no2n+11 is produced,
and the object no is sent out to the environment. Observe that the output stage takes 5 steps if the answer is yes, and 6
steps if the answer is no.

5. Some formal details

In the previous section, we have presented a family Π of recogniser P systems which solve the SAT problem. For
each Boolean formula, a P system Π (〈n, m〉) is constructed, where n is the number of variables and m is the number of
clauses. First of all, observe that the evolution rules of Π (s(ϕ)) are defined in a recursive manner from ϕ, in particular
from n and m. Let us list the necessary resources to construct Π (s(ϕ)):

• Size of the alphabet: 6nm + 5n + 4m + 32 ∈ Θ(nm)

• Initial number of membranes: 2 ∈ Θ(1)

• Initial number of objects: 3 ∈ Θ(1)

• Sum of the lengths of the rules: 86nm + 84n + 144m + 121 ∈ Θ(nm).

Therefore a Turing machine working in polynomial time can build Π (s(ϕ)) from the formula ϕ.
Finally, we can prove, using a formal description of the computation, that the P system Π (s(ϕ)) with input cod(ϕ)

always halts and sends to the environment the object yes or no in the last step. The number of steps of such a P system
is 2n + 11 if the output is yes and 2n + 12 if the output is no; therefore there exists a linear bound for the number of
steps of the computation.

Hence, the family Π of recogniser P systems with membrane creation using dissolution rules solves the SAT
problem in polynomial (actually, linear) time according to Definition 3. So, we have the following result:

Theorem 4. SAT ∈ PMCMC .

Corollary 5. NP ∪ co-NP ⊆ PMCMC .

Proof. It suffices to remark that the SAT problem is NP-complete, SAT ∈ PMCMC , and that this complexity class is
closed under polynomial time reduction and under complement. �

Remark 6. Note that in the family of recogniser P systems given in Section 4, membrane creation rules are used
to produce an exponential workspace where all possible assignments to the variables of the formula are generated,
whereas the process of checking whether or not the formula evaluates to true on any of them is done using dissolution
rules.

60 M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61

If we denote byMC+d (respectively,MC−d) the class of recogniser P systems with membrane creation and with
dissolution rules (respectively, without dissolution rules), then we have just proved that NP ∪ co-NP ⊆ PMCMC+d .

In [3], the authors showed that the generation in polynomial time of an exponential workspace (number of
membranes) using membrane creation rules, is not enough to solve NP-complete problems in polynomial time (unless
P = NP). More precisely, the authors proved that P = PMCMC−d .

Summing up, in the framework of recogniser P systems with membrane creation, we have proved the following:
(a) the class of problems which can be solved in a polynomial time by a family of such P systems without dissolution
is equal to class P; and (b) the class of problems which can be solved in a polynomial time by a family of such P
systems with dissolution contains the class NP ∪ co-NP.

6. Conclusions

Membrane computing is a new cross-disciplinary field of natural computing, which has reached an important
success in its short life.

This paper deals with the study of efficient solutions to well-known computationally hard problems, and in this
sense it is placed between the theoretical results mainly related to computational completeness and computational
efficiency, and the real implementation of the devices. It exploits membrane creation (a poorly studied variant) to
solve NP-complete problems, giving the first uniform solution to SAT in polynomial time (recently, we have proved
that this variant is PSPACE powerful [4]).

We stress the relevant role played by the rules of dissolution in the framework of recogniser P systems using
membrane creation, in order to “separate” their tractability from the (presumable) intractability of decision problems,
putting a barrier between the complexity classes P and NP (assuming P 6= NP).

This paper can be considered as a contribution to the interesting problem of characterising the tractability of hard
decision problems in terms of the descriptional resources required in membrane systems.

Acknowledgements

This work is supported by Ministerio de Ciencia y Tecnologı́a of Spain, by Plan Nacional de I+D+I (2000–
2003) (TIC2002-04220-C03-01), cofinanced by FEDER funds, and by a FPI fellowship (of the third author) from the
University of Seville.

References

[1] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, Towards a programming language in cellular computing, Electronic Notes in
Theoretical Computer Science 123 (2005) 93–110.

[2] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, A fast P system for finding a balanced 2-partition, Soft Computing 9 (9)
(2005) 673–678.

[3] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-Campero, Characterizing tractability with membrane creation,
in: 7th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2005. Workshop on Theory and
Applications of P Systems, Timisoara, Romania, 2005, IEEE Computer Society, 2005, pp. 448–457.

[4] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, F.J. Romero-Campero, A linear time solution for QSAT with membrane creation, in: R. Freund,
G. Lojka, M. Oswald, Gh. Paun (Eds.), Pre-Proceedings of the Sixth International Workshop on Membrane Computing, WMC6, Vienna
University of Technology, Vienna, Austria, 2005, pp. 395–409.

[5] P.L. Luisi, The chemical implementation of autopoiesis, in: G.R. Fleishaker, S. Colonna, P.L. Luisi (Eds.), Self-Production of Supramolecular
Structures, Kluwer, Dordrecht, 1994.

[6] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlı́n, 2002.
[7] M.J. Pérez-Jiménez, A. Riscos-Núñez, Solving the Subset-Sum problem by active membranes, New Generation Computing 23 (4) (2005)

367–384.
[8] M.J. Pérez-Jiménez, A. Riscos-Núñez, A linear solution for the Knapsack problem using active membranes, Lecture Notes in Computer

Science 2933 (2004) 250–268.
[9] M.J. Pérez-Jiménez, F.J. Romero-Campero, Solving the BIN PACKING problem by recognizer P systems with active membranes,

in: Gh. Păun, A. Riscos, A. Romero, F. Sancho (Eds.), Proceedings of the Second Brainstorming Week on Membrane Computing, Report
RGNC 01/04, University of Seville, Seville, Spain, 2004, pp. 414–430.

[10] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial complexity class in P systems using membrane division,
in: E. Csuhaj-Varjú, C. Kintala, D. Wotschke, Gy. Vaszyl (Eds.), Proceedings of the 5th Workshop on Descriptional Complexity of Formal
Systems, DCFS 2003, 2003, pp. 284–294.

M.A. Gutiérrez-Naranjo et al. / Theoretical Computer Science 371 (2007) 54–61 61

[11] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Generation Computing 20 (3) (2002) 295–305.
[12] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000) 108–143.
[13] Gh. Păun, Further open problems in membrane computing, in: Gh. Păun, A. Riscos, A. Romero, F. Sancho (Eds.), Proceedings of the Second

Brainstorming Week on Membrane Computing, Report RGNC 01/04, University of Seville, Seville, Spain, 2004, pp. 354–365.
[14] ISI web page. http://esi-topics.com/erf/october2003.html.
[15] P systems web page. http://psystems.disco.unimib.it/.

http://esi-topics.com/erf/october2003.html
http://psystems.disco.unimib.it/

	A uniform solution to SAT using membrane creation
	Introduction
	P systems with membrane creation
	Recogniser P systems with membrane creation
	Solving SAT in linear time with membrane creation
	An overview of the computation

	Some formal details
	Conclusions
	Acknowledgements
	References

